A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production
نویسندگان
چکیده
The progressive rise in energy crisis followed by green house gas (GHG) emissions is serving as the driving force for bioethanol production from renewable resources. Current bioethanol research focuses on lignocellulosic feedstocks as these are abundantly available, renewable, sustainable and exhibit no competition between the crops for food and fuel. However, the technologies in use have some drawbacks including incapability of pentose fermentation, reduced tolerance to products formed, costly processes, etc. Therefore, the present study was carried out with the objective of isolating hexose and pentose fermenting thermophilic/thermotolerant ethanologens with acceptable product yield. Two thermotolerant isolates, NIRE-K1 and NIRE-K3 were screened for fermenting both glucose and xylose and identified as Kluyveromyces marxianus NIRE-K1 and K. marxianus NIRE-K3. After optimization using Face-centered Central Composite Design (FCCD), the growth parameters like temperature and pH were found to be 45.17°C and 5.49, respectively for K. marxianus NIRE-K1 and 45.41°C and 5.24, respectively for K. marxianus NIRE-K3. Further, batch fermentations were carried out under optimized conditions, where K. marxianus NIRE-K3 was found to be superior over K. marxianus NIRE-K1. Ethanol yield (Y x∕s ), sugar to ethanol conversion rate (%), microbial biomass concentration (X) and volumetric product productivity (Q p ) obtained by K. marxianus NIRE-K3 were found to be 9.3, 9.55, 14.63, and 31.94% higher than that of K. marxianus NIRE-K1, respectively. This study revealed the promising potential of both the screened thermotolerant isolates for bioethanol production.
منابع مشابه
Process optimization for ethanol production from very high gravity (VHG) finger millet medium using response surface methodology
The Box-Wilson central composite design (CCD) based on response surface methodology (RSM) was used for ethanol fermentation using very high gravity (VHG) finger millet hydrolysate. Optimized process variables were namely, concentrations of yeast extract, magnesium sulphate and pH of the medium. High gravity mashes (>300 g dissolved solids per liter) were prepared by a thermo-stable α-amylase, f...
متن کاملDesign and optimization of ethanol production from bagasse pith hydrolysate by a thermotolerant yeast Kluyveromyces sp. IIPE453 using response surface methodology
Ethanol production from sugarcane bagasse pith hydrolysate by thermotolerant yeast Kluyveromyces sp. IIPE453 was analyzed using response surface methodology. Variables such as Substrate Concentration, pH, fermentation time and Na2HPO4 concentration were found to influence ethanol production significantly. In a batch fermentation, optimization of key process variables resulted in maximum ethanol...
متن کاملInvestigation of the Effect of Gammaoryzanol Addition on the Properties of the Nanoliposomes by using Response Surface Methodology: Preparation, Characterization and Optimization
Liposomes are the most important lipid-based nanocarriers, which are used for encapsulation of both hydrophilic and hydrophobic active compounds. The aim of this study was to investigate the effect of Gammaoryzanol (GO) addition to lipid bilayers on characteristics of liposomes prepared by a modified ethanol injection method. The GO bearing nanoliposomes were prepared with different molar ratio...
متن کاملResponse Surface Methodology for Optimization of Green Silver Nanoparticles Synthesized via Phlomis Cancellata Bunge Extract
Green synthesis of metal nanoparticles is an interesting issue of nanoscience due to its simplicity and eco-friendliness. The present study describes a cheaper, non-toxic and simple route for biosynthesis of Silver nanoparticles using Phlomis cancellata Bunge extracts. Since the experimental conditions of this procedure play vital roles in the synthesis rate of the nanoparticles, a response sur...
متن کاملOptimization of Key Factors in Serum Free Medium for Production of Human Recombinant GM-CSF Using Response Surface Methodology
Researchers add serum to a classical medium at concentrations of 5 to 10% (v/v) to grow cellsin-vitro culture media. Unfortunately, serum is a poorly defined culture medium componentas its composition can vary considerably while serum-free cell culture media are an excellentalternative to standard serum-containing media and offer several major advantages. Advantagesof us...
متن کامل